SWAT Modeling of Nitrogen Dynamics Considering Atmospheric Deposition and Nitrogen Fixation in a Watershed Scale

نویسندگان

  • Chung-Gil Jung
  • Seong-Joon Kim
  • C.-G. Jung
  • S.-J. Kim
چکیده

The Soil and Water Assessment Tool (SWAT) nitrogen (N) water quality model considers the artificial inputs associated with human activities, including point and nonpoint source pollution loads. Although SWAT has the ability to simulate atmospheric N deposition and fixation, they were not considered in the modeling research. N deposition from the air is an important and considerable pathway for the input of N species into watersheds and water bodies, causing soil and water body acidification and the leaching of N into surface and groundwater, resulting in eutrophication and degraded water quality. The goal of this study is to assess the effects of atmospheric and agricultural N loads on stream water quality at the watershed scale. For a 6642 km Chungju dam watershed, SWAT was calibrated for 4 years (2003-2006) and validated for another 4 years (2007-2010) using daily anthropogenic N data (sewage discharge pollutants and fertilizer) and monthly measured atmospheric deposition data for 3 NO − , 4 NH + , and dissolved organic N (DON). At the watershed outlet, the Nash-Sutcliffe (1970) efficiency (NSE) of daily streamflow during the validation period was 0.74. The coefficient of determination (R) of total N was 0.69 considering atmospheric deposition, whereas it was 0.33 when removing the deposition effect. The results of this study demonstrate the potential for using the N dynamics between the atmosphere and land for SWAT assessments of nonpoint source pollution and for modeling stream water quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Airshed Domains for Modeling Atmospheric Deposition of Oxidized and Reduced Nitrogen to the Neuse/Pamlico System of North Carolina

1 ABSTRACT Atmospheric deposition is important to nutrient loadings to coastal estuaries. Atmospheric emissions of nitrogen travel hundreds of kilometers as they are removed via atmospheric deposition. Long-range transport from outside the Neuse/Pamlico system in North Carolina is an important contributor to the total (wet + dry) deposition of nitrogen to the watershed, estuary and Sound. We ne...

متن کامل

Integration of nitrogen dynamics into the Noah-MP land surface model v1.1 for climate and environmental predictions

Climate and terrestrial biosphere models consider nitrogen an important factor in limiting plant carbon uptake, while operational environmental models view nitrogen as the leading pollutant causing eutrophication in water bodies. The community Noah land surface model with multiparameterization options (Noah-MP) is unique in that it is the next-generation land surface model for the Weather Resea...

متن کامل

GIS/EM4 - Modeling Atmospheric Nitrogen Deposition and Transport in the Chesapeake Bay Watershed: A GIS Approach

Abstract The atmospheric deposition of nitrate and ammonia species has been identified as a major factor in the decline of water quality in the Chesapeake Bay. Recent reports have indicated that atmospheric deposition may account for 25 to 80% of the total nitrogen load entering the Bay. However, many uncertainties exist regarding the accuracy of these estimates including the accuracy of the at...

متن کامل

Box-modelling of the impacts of atmospheric nitrogen deposition and benthic remineralisation on the nitrogen cycle of the eastern tropical South Pacific

Both atmospheric deposition and benthic remineralisation influence the marine nitrogen cycle, and hence ultimately also marine primary production. The biological and biogeochemical relations in the eastern tropical South Pacific (ETSP) among nitrogen deposition, benthic denitrification and phosphorus regeneration are analysed in a prognostic box model of the oxygen, nitrogen and phosphorus cycl...

متن کامل

The spatially-distributed AgroEcoSystem-Watershed (AgES-W) hydrologic/water quality (H/WQ) model for assessment of conservation effects

AgroEcoSystem-Watershed (AgES-W) is a modular, Java-based spatially distributed model which implements hydrologic/water quality (H/WQ) simulation components under the Object Modeling System (OMS3) environmental modeling framework. AgES-W has recently been enhanced with the addition of nitrogen (N) and sediment modeling components refactored from various agroecosystem models including SWAT, WEPP...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017